Production and evaluation of activated carbon from palm kernel shells

Production and evaluation of activated carbon from palm kernel shellse Sector

Author/s

Chandra Shekar Pandey

Academy of Scientific and Innovative Research (AcSIR), CSIR-National Chemical Laboratory (CSIR-NCL) Campus, Pune, India

Abstract

The Shell activated carbon for activated carbon. Activation of char prepared at 600 C. Activated carbon prepared with high temperature char had a significant amount of microspore volume. For all carbonization rates, both microspore and macrospore volumes showed maximum values of carbon burn-off. Only a small amount of mesoporous was developed in the initial stage of activation. However, there has been a rapid development in mesoporous was observed. The pattern has been shown. Therefore, the voracious interest for energizes, eco-friendliness and execution assurance and calls for natural well-disposed elective fills sources, while not over depending on petroleum derivatives. The point of this work was to deliver carbonized carbon from palm kernel shells (PKS) via carbonization strategy at temperature of 600°C. The outcomes demonstrate that the AC created from PKS upon 2 days’ corrosive impregnation pursued by carbonization periods, purged both water bodies superior to anything the others on decrease of microbial and smaller scale pollution substance of the water bodies. The ramifications of the outcomes demonstrate that generation of the carbon from PKS is esteem expansion to oil palm handling, lift to the national economy and constructive natural effect to the general population that produce and use PKS. Thus, unique thing conclusions, for instance, bioenergy and bio-broil age for adsorption purposes from palm partition shells, are enabled in system endeavours as against the sole traditional start for warmth creation.

Keywords

activated carbon, palm kernel shell, carbonization, and porosity.

To cite this article

Pandey, C. S.(2019). Production and evaluation of activated carbon from palm kernel shells, International Journal of Engineering, IT and Scientific Research (IJEISR). Vol. 3, No. 1, pp.19-28. Doi:10.31219/osf.io/e9pqk

Copyright

Copyright © 2019 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

References

  1. Adeleke, A. O., Latiff, A. A. A., Al-Gheethi, A. A., & Daud, Z. (2017). Optimization of operating parameters of novel composite adsorbent for organic pollutants removal from POME using response surface methodology. Chemosphere, [Crossref]

  1. Anyika, C., Asri, N. A. M., Majid, Z. A., Yahya, A., & Jaafar, J. (2017). Synthesis and characterization of magnetic activated carbon developed from palm kernel shells. Nanotechnology for Environmental Engineering, 2, 16. [Crossref]

  1. APHA (2005). Standard methods for the examination of water and wastewater, 21st edn.Washington, DC. [Google Scholar]

  1. Bhatti, H. N., Jabeen, A., Iqbal, M., Noreen, S., & Naseem, Z. (2017). Adsorptive behavior of rice bran-based composites for malachite green dye: Isotherm, kinetic and thermodynamic studies. Journal of Molecular Liquids, 237, 322–333. [Crossref]

  1. Daud, W. M. A. W., & Ali, W. S. W. (2004). Comparison on pore development of activated carbon produced from palm shell and coconut shell. Bioresource Technology, 93, 63–69. [Crossref]

  1. Eze, V. C., Onwuakor, C. E., & Mgbeokwere, E. U. (2015). Comparative analysis of the microbiological and physicochemical characteristics of greywater sources in off-campus hostels at michael okpara university of agriculture, umudike, abia state, nigeria. International Journal of Current Microbiology and Applied Sciences, 4, 196–205. [Google Scholar]

  1. García, J. R., Sedran, U., Zaini, M. A. A., & Zakaria, Z. A. (2017). Preparation, characterization, and dye removal studyof carbon prepared from palm kernel shell. Environmental Science and Pollution Research, 25, 5076–5085.[Google Scholar]

  1. Jabit, N. A. (2007). The Production and characterization of activated carbon using local agricultural waste through chemical activation process [TP245. C4 N974 2007 f rb](Ph.D dissertation), Universiti Sains Malaysia.[Google Scholar]
  2. Koksal, B., Afsin, B., Tabak, A., & Caglar, B. (2011). Structural characterization of aniline-bentonite composite by FTIR, DTA/TG, and PXRD analyses and BET measurement. Spectroscopy Letters, 44, 77–82. [Google Scholar]

  1. Lua, A. C., & Guo, J. (2001). Preparation and characterization of activated carbons from oil-palm stones for gas-phase adsorption. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 179, 151–162. [Google Scholar]

  1. Montes-Morán, M. A., Suárez, D., Menéndez, J. A., & Fuente, E. (2004). On the nature of basic sites on carbon surfaces: an overview. Carbon, 42, 1219–1225. [Google Scholar]

  1. Noreen, S., Bhatti, H. N., Zuber, M., Zahid, M., & Asgher, M. (2017). Removal of actacid orange-rl dye using biocomposites: modeling studies. Polish Journal of Environmental Studies, 26, 21–25. [Google Scholar]

  1. Pogonoski, J. J., Pollard, D. A., & Paxton, J. R. (2016). Conservation overview and action plan for australian threatened and potentially threatened marine and estuarine fishes. Canberra, ACT:Environment Australia 2002.[Google Scholar]

  1. Regti, A., Laamari, M. R., Stiriba, S. E., & Haddad, M. (2017). Potential use of activated carbon derived from Persea species under alkaline conditions for removing cationic dye from wastewaters. Journal of the Association of Arab Universities for Basic and Applied Sciences, 24, 10–18.[Google Scholar]

  1. Rugayah, N., & Nuraini, H. (2014). Chicken bone charcoal for defluoridation of groundwater in indonesia. International Journal of Poultry Science, 13, 591–596.[Google Scholar]

  1. Selim, M. M., EL-Mekkawi, D. M., Aboelenin, R. M., Ahmed, S. A. S., & Mohamed, G. M. (2017).Preparation and characterization of Na-A zeolite from aluminum scrub and commercial sodium silicate for the removal of Cd2+ from water. Journal of the Association of Arab Universities for Basic and Applied Sciences, 24, 19–25. [Google Scholar]

  1. Shoukat, S., Bhatti, H. N., Iqbal, M., & Noreen, S. (2017). Mango stone biocomposite preparation and application for crystal violet adsorption: A mechanistic study. Microporous and Mesoporous Materials, 239, 180–189. [Google Scholar]

  1. Tahir, N., Bhatti, H. N., Iqbal, M., & Noreen, S. (2017). Biopolymers composites with peanut hull waste biomass and application for crystal violet adsorption. International Journal of Biological Macromolecules, 94, 210–220. [Google Scholar]

  1. Zhou, Y., Wu, W., & Qiu, K. (2010). Recovery of materials from waste printed circuit boards by vacuum pyrolysis and vacuum centrifugal separation. Waste Management, 30, 2299–2304. [Google Scholar]